Wind Resistant Design of Long Span Bridges No.1

-- Introduction ---

ungkyunkwan University 2012/9/20 Fall Term

Concurrent Prof. Hiroshi TANAKA

All (c) rights are deserved to Dr. Mroshi TANAKA

Hiroshi TANAKA

Profile

- Born 1949
- Kyoto University Civil Master 1975

- Dept. of Bridge Design at Hitachi-Zosen 1975
- Research at Princeton University 1984-5
- Doctor from Kyoto University 1993
- TANAKA Prize of JSCE for Excellent Paper 1994
- Samsung C & T for Incheon Bridge 2006
- Present // Consulting at Bridge Team
 JC

Tanaka's Major Projects

Contents of Lectures

- 1. Wind Resistant Design (Instruction)
- **2. Check of Vibrations**
- 3. Wind Tunnel Tests
- 4. Flutter Analysis
- 5. Gust Response Analysis

Recommendation of Text Books

Scanlan's is best seller

Strommen's is mathematics

Hansen's is compact

IC

The Beginning of Modern Suspension Bridges

• In 19C, suspensions' disasters were so many.

The suspension bridge designed by Finney

Finney was the first designer who design the original suspension bridge, which is composed with piers, towers, cable, hangers etc.

TABLE Progress in Record-Span Suspension Bridges				
Year Completed	Bridge Name	Span Length (m)		
1883	Brooklyn	486.0		
1903	Williamsburg	487.5		
1909	Manhattan ^a	450.0		
1924	Bear Mountain	497.0		
1926	Delaware River	533.0		
1929 Ambassador		564.0		
1931	George Washington	1,067.0		
1936	San Francisco-Oakland Bay ^a	704.0		
1937	Golden Gate	1,280.0		
1939	Bronx-Whitestone ^a	701.0		
1940	Old Tacoma Narrows ^a	853.0		
1957	Mackinac ^a	1,158.0		
1964	Verrazano-Narrows	1,298.0		

100 CONTRACTOR (100 CONTRACTOR)

Menai Bridge 1826 (British)ed to D1H76 m

JC

Leon Moisseiff (1872-1943)

JC

Othmar Ammann (1879-1965)

Deflection Theory

DEAD LOAD (H_W) & LIVE LOAD (H_p)

Moment becomes small !!

George Washington Bridge All (C) rights are deserved to Dr Hirosh (1931) 1067 m

Traffic was very busy

TANAKA

George Washington Bridge (1962)After Attaching Lower Truss Members

San Francisco-Oakland Bay Bridge (1936)

Golden Gate Bridge (1937) ed to 1280 m

Tacoma Narrows Bridgere (1940) Hiro 855m

Collapse of Original Tacoma Narrows Bridge

Karman Vortex Streets

Coincide with Eigen value of Cylinder

Mechanics of Vortex

Fig Mechanism of Inducing Karman Vortex

Karman Vortex Streets are ;

Vortex-induced vibration of a tower with circular section By Prof. FUJINO

All (C) rights are deserved to Dr.Hiroshi

TANAKA

Strouhal Number (St.)

- Vertical First Mode
- St. = f x D / U = 0.11 (Original Tacoma Bridge)

Where f: frequency [1/s]

D: Frontal dimension [m]

U: Wind Velocity [m/s]

At the collapse of bridge:

U cr = 0.2 Hz x 2.44 m / 0.11 = 4.44 m/s

U cr is much different from 18.6 m/s which

Prof.Farquharson measured.

Therefore Karman vortex street is not the cause.

Historical "Miss understanding"

 $V_r = 0.88$

 $V_r = 1.08$

 $V_r = 1.40$

Bending

 $V_r = 0.76$

 $V_r = 0.90$

V,=1.10

 $\theta_L = 20^\circ$ $\theta_L = 30^\circ$ $\theta_L = 40^\circ$

C/D = 0.5C/D = 2.0(1) 2 3

JC

PC cable Stayed Bridge Deck Section

deserved to ANAKA

Twin Girder Deck

F. I. V. on Bending & Torsion

Computer Simulation by COWI

Flutter instability

Aeroelastic instability (divergent motion of the deck) must be confirmed not to occur at wind speeds foreseen within the design life of the bridge.

Torsional Oscillation Mechanism By Dr. Alan Larsen

Comparison between new and old Tacoma Narrows Bridge

JC

Change of Deck Section

JC

Ideas to prevent vibration by Prof.Farquharson

After Collapse of Tacoma Narrows Br.

JC

All (C) rights are deserved to Dr.Hiroshi

TANAKA

Oscillation of Golden Gate Bridge

• 4th December 1951, vertical oscillations reached 3.3m by strong NW direction winds.

After Collapse of Tacoma Narrows Br. (2)

A. Murray MacKay (1970)

All (C) rights are deserved to Dr. Hiroshi

TANAKA

Role of the Center Diagonal Stays

Center diagonal stay just before collapse

TANAKA

Collapse of center diagonal stay

David P Steinman (1886-1960)

Thousand Island Bridge

JC

Deer Isle Bridge

New Tacoma Narrows Bridge (1950)

Application of Truss Deck

The Second Tacoma Narrows Bridge

JC

Prof.R.H. Scanlan & H.Tanaka (1984)

JC Lecture of Structural Dynamics at Princeton University (USA)

Wing Theory

FIG Static Pressure Field on a NACA Airfoil (Trailing edge fulfills Kutta condition)

TANAKA

Bluff Body (e.g., Bridges)

FIG Flow around Bluff Bodies (trailing edge does **not fulfill Kutta condition**)

Dimension of Original Tacoma Bridge

Main span length (m)	853.4
Side span length (m)	335.3
Tower height (m)	71
Width between cables (m)	11.9
Total deck width (m)	11.9
Deck edge (m)	2.3
Cross section of each main cable (m2)	0.124
Mass of each main cable (t/m)	1.05
Inertia moment for vertical bending I_y (m ⁴)	0.154
Inertia moment for lateral bending I (m4)	5.69
Inertia moment for torsion J (m4)	6.07×10^{-6}
Deck mass (t/m)	6.22
Polar inertia moment for deck (tm2/m)	106.5

Finite Model of Original Tacoma Bridge

Comparison of national frequencies $(Unit: 2\pi f)$

Mode type	ADISNOL3D	COBO	COLAPSE
(1) LS	0.568	0.435	_
(2) VA	0.817	0.795	_
(3) VS	1.189 By Farguharson	0.809	-
(4) LA	1.296 0.824 rad/s	0.949	_
(5) TA	1.505	1.147	1.256
(6) TS	1.608	1.165	_
(7) VA	1.705	1.055	_
(8) VS	1.792	-	_
(12) VS	2.179	-	_
(16) TA	2.321	-	_

Vibration Modes

Figure Evolution of a in comparison with U using 10 modes.

Figure Evolution of β in comparison with U using 10 modes.

Comparison between analysis and measurement on Original Tacoma Bridge

Analyses	U(m/s)
Jurado, 2modesξ = 0.00318	11.49
Jurado, 10modes ξ = 0.00318	11.49
Scanlan torsional flutter $\xi = 0.003$	7.60
Scanlan torsional flutter $\xi = 0.010$	10.23
Farquharson real collapse	18.77

Flutter Solution by Prof. Scanlan

• Single-degree-of-freedom torsional flutter

$$I\left[\ddot{\alpha}+2f_{z\alpha}\omega_{\alpha}\dot{\alpha}+\omega_{\alpha}^{2}\alpha\right]=F(\alpha,\dot{\alpha}),$$

$$F(\alpha,\dot{\alpha}) = A_{2}\dot{\alpha} + A_{3}\alpha,$$

Non-dimensional Form:

$$F(\alpha,\dot{\alpha}) = \oint U^2 (2B^2) \left\{ KA \, \sharp (B\dot{\alpha}/U) + K^2 A \, \sharp \alpha \right\},$$

Flutter Derivatives by Scanlan

JC

All (C) ABRODY NAMI/CO COEFFICISHIENTS

TANAKA

Flutter derivatives A₂*

JC

Karman & Dunn

μ: Mass Ratio $\rho B^2 g/\omega$. Or weight/foot All (C) rights are deserved to Dr. Hiroshi

Vortex Pattern over Rotating Deck Section drawn by Scanlan

JC

TANAKA

Dimension of Tacoma Narrows Bridge

- m = 4.249 t/m
- r (Rotation Radius): 4.573 m
- g (Gravity) 9.8 m/s₂
- I (Polar moment) 178 tm2/m
- ρ (Air density) 0.00123 t/m₃
- B = 11.89 m
 - $(A_{\frac{1}{2}})_{\rm erre} = 2I\zeta_a/\rho B^A,$
 - $= 14.48\xi_{\alpha}$.

OTN flutter conditions as a function of Mechanical damping

ζn	A [*] ₂	U/nB	Proto Type Velocity U cr (m/s)
0.003	0.043	3.20	7.6
0.005	0.072	3.50	8.3
0.010	0.145	4.30	10.2
0.015	0.217	5.15	12.2
0.020	0.290	5.75	30.6

Results of Wind Tunnel Tests of Original Tacoma Bridge

The results of wind tunnel tests

- $!-NT(2^{nd})$ Ucr = 0.99 m/s x $\sqrt{50}$ = 7.0 m/s Proto-Type
- f_{model} = 1.44 Hz
 f_{proto-type} = 1.44/√50

 = 0.20 Hz
 The same value of observation

 2.20 m/s x √50 = 15.6 m/s
 Original Tacoma Bridge was collapsed at ■.

Conclusion

- The cause of the collapse of original Tacoma Narrow Bridge was flutter.
- Prof.R.H.Scalan made clear it by using aerodynamic theory.
- Flutter is destructive phenomena, therefore we must check that it will not occur below wind design speed.