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THE EFFECTS OF LARGE-SCALE UPSTREAM GUSTING
ON THE AEROELASTIC BEHAVIOR OF SECTION MODELS

8y

D. R, Hustonl, H. R, Bosch? and H. Tanaka 3

ABSTRACT

This paper will describe the results of a
recent wind tunnel study which examined the
effect of large-scale upstream gusting upon the
aercelastic behavior of bridge deck section
models. The large-scale upstream gusts were
created with a flapping-airfoil gust generator.
The results of the section model  studies
demonstrate that the method of active gust
generation can produce large-scale upstream
gusts which are capable of inducing measurable
changes in the flutter stability and buffeting
response of bridge deck section models. The
changes which were induced in the aeroelastic
behavior of the section models by upstream
gusting will be presented along with an
interoretation of these preliminary results.

KEYWORDS: AReroelasticity; Large-scale; Section
model; Turbulence

1. INTRODUCTION

The interaction of a flexible structure and a
moving fluid, such as a large suspended-span
bridge subjected to wind loading, is an

inherently complex problem. The complexities
arise because the fluid and structural motions
are coupled by the continuity of displacements
and tractions at the fluid-structure interface.
The presence of turbulence in the flow
introduces an additional complication to the
interaction problem. An understanding of fluid-
structure interaction problems usually requires
the  introduction of mildly restrictive
theoretical assumptions which are then used to
formulate parsimonious semi-empirical models
with easily measured parameters.

The flexibility and exposure to the wind of the
deck structure on a long suspended-span bridge
enables an analysis of the wind loading to be
conducted by considering only the action of the
wind loading upon the flexible bridge deck.
If, in addition, "strip-theory" aerodynamics is
valid for the bridge deck structure, then it is
possible to examine the effects of wind loading
on the full bridge structure by studying the
gynamics of a conceptual two-dimensiormal slice
of the bridge deck, 1i.e. a section model.
Section models are extremely useful in the
theoretical modeling of the aercelastic
behavior of elongated structures. The
simplicity of section models also facilitates
their use ih wind tunnel simulations.

The equations of motion for a two-degree-of-
freedom section model take the form:

MR+ 2p0p B+ wh? hl = -L(t) {11

(2]

I fa + 2L, wy & + wazal = M{t)

where

h(t) = the vertical displacement of the section
model

a(t) = the torsional displacement of the
section model

L(t) = the lift

M(t) = the aerodynamic moment

The generalized aerodynamic forces are

theoretically calculated by integrating the
instantaneous local surface pressures which act
on the deck section as the section undergoes a
virtual vertical or torsional displacement.
The fluctuating aerodynamic pressures and the
associated generalized forces depend upon the
upstream flow conditions, the deck section
geometry, the motion history of the deck
section and local topographical considerations.
Since the theoretical calculation of the local
aerodynamic pressures requires an integration
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of the partial differential equations of the
unsteady fluid motion around the bluff body, it
is wusually necessary to invoke additional
simplifying assumptions so that the fluid
forces can be faithfully modeled. A primary
simplifying assumption is to model the
fluctuating aerodynamic forces by conceptually
separating the aerodynamic forces into two
components, one which depends on the motion of
the deck section the other being a buffeting
force which depends on the upstream gusting,
i.e.:

L(t) = Lp(t) + Ly(t) (3]

M{t) = Mp(t) + Mp(t) {4}

where the subscripts m and b correspond to the
motion-dependent and the buffeting aerodynamic
forces, respectively.

Stability of dynamical systems, such as bridge
decks subjected to wind loading, about
positions of equilibrium can be assessed from
the linearized motion-dependent forces acting
on the system in the neighborhood of the
equilibrium position, ref. (1). The motion-
dependent  aerodynamic forces are usually
expressed in terms of the flutter derivative
coefficients as follows, refs. (2) and (3):
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Mn(s) = oUZB2 (KA} (K) B+ K AJ(Kla' (4
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where s and K are the reduced time and
frequency, respectively.

The aeroelastic stability of a bridge deck
depends upon whether the combined action of
motion-dependent  aerodynamic and structural
forces will cause a net increase or decrease in
the total energy of the system, If the system
acts to input energy from the airstream, then
the deck motion will become excessively large
and eventually result in damage to the
structure. Otherwise, the aeroelastic deck-

section system will dissipate the energy
contained in incipient motions, thereby forming
a stable system. The calculations which assess
the aeroelastic stability of the deck sections
and the corresponding prototype bridge
structures are usually iterative procedures
that search for the lowest mean velocity
corresponding to a neutrally stable system.

Experiments conducted with bluff bodies
indicate that aeroelastic instabilities are
usually of the single-degree-of-freedom type
which are associated with a negative effective
aerodynamic damping. The effective torsional
and vertical aerodynamic damping are
represented in terms of the A* (X} and the

B}MK)  flytter derivative 2 coefficients,
respectively. Positive trends in either of
these flutter coefficients are indicative of
destabilizing tendencies. Therefore. a
measurement of the A3 (K) and the H] (K)
flutter derivatives will usually give & very
good indication of the tendencies towards
bluff-body flutter.

If it 1is assumed that the motion-dependent
aerodynamic forces are indeed independent of
the upstream wind gusts, then the stability of
the aerocelastic system about a position of
equilibrium will be independent of the presence
of upstream turbulence and the flutter
derivatives will not change under smooth and
turbulent flow conditions. However, if the
aeroelastic stability is affected by upstream
gusting, then the flutter derivatives will be
noticeably different under different flow
conditions.

Flutter derivatives are usually measured with
initial conditions experiments that extract the
effective aeroelastic damping from the response
that ensues from giving the section model
either an initial torsional or vertical
displacement.

The buffeting effect of upstream turbulence is
to produce generalized aerodynamic forces that
are presumably independent of the deck section
motion. The turbulent wake downstream of the
bluff body, i.e. the signature turbulence, will
also produce a buffeting effect, regardless of
the presence of upstream turbulence. The
combination of upstream turbulence with
signature turbulence will presumably produce
larger buffeting forces than those which form
in smooth flow which are solely attributed to
the signature turbulence.

Wind tunnel simulations of the prototype
turbulent flow conditions are usually hampered
by problems of scale. The wind gusts
encountered at the bridge site are, in general,
several times larger than the width of a
typical bridge deck, ref. (4). The gusts which
can be simulated in a wind tunnel by passive
methods such as grids, strakes, wooden blocks,



etc. are wusually somewhat smaller than the
typical bridge deck section model, ref. (5).
Two alternative solutions are available for the
gust scale simulation problem. One alternative
is to use significantly smaller section models,
ref. (6). The use of small section models will
alleviate the gust scaling problem but will
exacerbate Reynolds number scaling problems
and problems associated with faithfully
reproducing the geometry of the prototype deck
sections. The other alternative solution to
the gust scaling problem is to use active gust
generation techniques such as flapping airfoils
or air-jet injectors.

This paper will present some of the results of
a wind tunrel investigation of turbulent-wind
bridge aercelasticity. The section models were
tested under under smooth and gusting flow
conditions. The gusting flow conditions were
passively created, in one set of tests, by a
grid and actively induced, in another set of
tests, by a flapping-airfoil gust generator.
The flapping-airfoil gust generator is capable
of producing gusts that are several times
larger than the width of a deck section.

The following sections will discuss, in
succession, the experimental procedures and
apparatus, the results of some of the
experiments and a preliminary interpretation of
the experimental results.

2. EXPERIMENTAL APPARATUS AND PROCEDURES

The innovative apparatus in this project were
the flapping airfoil gust gererators. The gust
generators are positioned upstream of the deck
section and create two-dimensionally coherent
gusts by flapping an array of airfoils in
unison.  Two gust generators were used in this
manner.  One generator, referred to as the in-
phase gust generator, flapped all of the
airfoils in one direction, thereby controlling
vertical gusts. The other generator, referred
to as the out-of-phase gust generator flapped
two airfoil arrays in opposite directions,
thereby tending to choke off the flow and
controlling the horizontal gust action.

The wuse of flapping-airfoil type qust
generators for wind engineering purposes was
originally proposed by Scanlan, ref. (7). The
development of the gust generator technology
was conducted at the Colorado State University
Fluid Dynamics and Diffusion Laboratories, ref.
(8). The result of these studies was the
fabrication and installation of flapping-
airfoil gust generators in the Federal Highway
Agministration's G. S. Vincent Wind Tunnel,
McLean, VA. Details of some of the flow
patterns that can be produced with the active
gust generators can be found in ref. (9). A
schematic diagram of the flapping-airfoil gqust
generator mechanism is shown in fig. 1.

The experiments that are reported in this paper
represent the first use of the flapping-airfoil
gust generators, described above, to the
testing of bridge deck section models.
Therefore, the experiments were designed so
that the influence of the gust generators could
be easily detected and evaluated. This design
entailed performing standard state-of-the-art
testing procedures on section models in both
smooth and gusting flow patterns.

Two types of smooth flow patterns were employed
in this study. One type was formed when the
gust generators were removed from the wind
tunnel. The resulting undisturbed airstream
was quite smooth with a turbulence intensity of
less than 1%. This approximately laminar flow
will pe referred to as the “"Laminar" flow. The
other type of smooth flow was produced, while
the gust generators were installed in the wind
tunnel. This flow was created by passing the
air through the generators with the airfoils
held in a neutral stationary position. The
resulting flow was reasonably smooth flow with
an intensity of approximately 3%. The flow
produced by holding the gust generator airfoils
in a neutral position, will be referred to as
the "Neutral" flow.

Large-scale gusting flow patterns were induced
by flapping the airfoils on the in-phase gust
generator with a large-amplitude, 2.0 Hz.
cutoff, low-pass filtered white noise random
driving signal. This driving signal was
selected so that the gust generators would
produce one of the more violently
turbulent flow patterns that the gust
generators were capable of synthesizing. The
gusting flow, which formed downstream of the
generators and upstream of the section models,
with this driving signal, was not intended to
simulate any specific prototype field
condition, but rather it was simply a large-
scale high intensity flow pattern. Since the
flow was produced by driving the in-phase gust
generator with a 2.0 Hz. low-pass filtered
white noise random signal, hereinafter it will
be referred to as the "Low-Pass" flow. The
intensity of the turbulence contained in the
"_ow-Pass" flow was measured at 20%. The
length of the resulting gusts was quite large
and could be extended, in theory, to infinity.

An  additional type of turbulent flow was
created by placing a 4x4 wood lath grid across
the mouth of the wind tunnel. The wooden grid
induced turbulence intensities that ranged from
10% to 20%. The flow pattern produced by the
wooden grid will be referred to as the "Grid
Turbulent® flow. The scale of the "Grid"
turbulence and the spanwise coherence was
somewhat smaller than that of the “Low-Pass"
flow.



Three different section models were tested

under these four flow regimes. The deck
section models were geometrically faithful
slices of the Deer Isle-Sedgewick, Maine,

bridge, a proposed fairing-modified version of
the Deer Isle bridge and the Golden Gate
Bridge, San Francisco, Calif., figs. 2.a-c.
The ummodified Deer Isle bridge is of the plate
girder or H-type. The proposed fairing-
modified version of the Deer Isle bridge forms
a rather streamlined deck section. The Golden
Gate deck section is of the open-truss type.

The standard section model tests consisted of:
1.) measuring the motion-dependent aerodynamic
forces, i.e. the flutter derivatives, by
initial condition experiments, 2.) recording
the stationary response of the section model to
stationary wind conditions. Both sets of
experiments were performed with the deck
section models mounted on flexible springs.
This elastic support structure was constructed
to permit motion in the vertical direction and
in a torsional direction about a spanwise-
running  axis. The support structure was
designed to restrain or enable the vertical and
the torsional degrees of freedom separately, if
desired. Therefore, tr2 section model could be
configured as either a single-degree-of-freedom
system or as a two-degree-of-freedom system.

All of the flutter derivatives were measured
with the section model configured to act as a
single degree of freedom system. The flutter
derivatives that could be measured with an
$.0.0.F. setup were measured were the A¥(K),
A%(K), Hr(K) and the Hx(K) flutter derivatives,
i.e. the auto-excited flutter derivatives. The
stationary time histories were recorded with
the deck sections mounted in three different
configurations, one which permitted single
degree of freedom vertical motion, one which
permitted single degree of freedom torsional
motion and one which permitted two degree of
freedom combined vertical and torsional motion.

3, EXPERIMENTAL RESULTS

3.1 Flow Measurements

The ability of the gust generators to produce
controllable gusts is demonstrated by figs. 3-
5. Figs. 3.a and 3.b are strip chart
recordings of the flow that resulted from
holding the airfoils in a stationary neutral
position, i.e. the "Neutral" flow, at a mean
velocity of 7 ft./sec, with an intensity of
about 3%. An observation of these traces
indicates that the "average" gust size is of
the order of 1 ft. or less. Figs. 4.a, 4.b and
4.c are traces of the actuator motion and the
gust velocities that result from flapping the
in-phase airfoils with a 2.0 Hz. low-pass
filtered, large-amplitude, white noise signal.
The intensity of the resulting turbulence was
20%. An observation of figs. 4.b and 4.c

indicates that the "average" gust size which
results from using these flow patterns is at
least 7 ft, which is several times larger than

the 1ft.-2ft. range of t i
widths,  Spectra ggf tthigg%ugggglonmo@ggE}

vertical gust velocity, and the horizontal gust

velocities which correspond to the "Low-Pass"
flow are shown in fig. 5.

3,2 Flutter Derivative Measurements

The AX(K), AF(K), H¥(K), and Hp(K) flutter
derivatives were extracted from the three

section models under smooth and gusting flow
patterns. fairing-modified Deer Isle deck
section and the Golden Gate deck section were
all measured under smooth and gusting flow
conditions. Both versions of the Deer Isle
deck section were tested under the "Laminar,"
“Neutral,”" "Grid Turbulent,” and "Low-Pass"
flows. The Golden Gate deck section was
tested only under the "Neutral® and the "Low-
Pass" flows.

The flutter derivatives which were measured by
initial condition experiments are shown in
figs. 6-8. Figs. 6.a-6.d contain the flutter
derivatives that were extracted from the
unmodified Deer Isle deck section. Figs. 7.a-
7.d are the flutter derivatives which were
extracted from the fairing-modified version of
the Deer Isle deck section, Figs. 8.a-8.d are
the flutter derivatives which were extractegd
from the Golden Gate deck section.

All of the flutter derivatives that are shown
in figs. 6-8 were calculated from estimates of
the effective aeroelastic damping and natural
frequency. These estimates were performed
with a digital version of the logarithmic
decrement procedure that used all of the local
maxima and minima in the free vibration
response of the deck section to calculate the
desired system parameters, ref. (10).

Since the logarithmic decrement procedure is
strictly applicable to the case where a linear
system is oscillating as the result of nonzero
initial conditions without any applied external
forces, such as buffeting forces, it was
decided to verify some of the measured flutter
derivatives with an independent procedure. One
alternative method of estimating damping ratios
and natural frequencies of elastically
supported section models, is to measure the
width of the peak that occurs in the spectrum
of the displacement that results from buffeting
the section with a broadbanded stationary
random excitation. A modified version of this
procedure which used a least-squares spectral
curve fitting procedure, ref. (10), coupled
with the wuse of a Maximum Entropy spectral
estimator, ref. (11), was used to remeasure the
A¥(K)  flutter derivative under smooth and
gusting flow conditions. The results of this
independent  flutter derivative extraction



procedure to the stationary response of the
Golden Gate deck section are shown in fig. 9.

Since it is impractical to measure the
reference zero-velocity viscous damping ratio
by the spectral width procedure, the vertical
positioning of the horizontal axis in fig. 9 is
uncertain. If the mean of viscous damping
ratios where were measured with transient
initial condition experiments was employed,
then the horizontal-axis takes the position of
the solid line in fig. 9. However, since the
A:(K) flutter derivative should approach zero
as the reduced velocity approaches zero the
horizontal axis in fig. 9 should be shifted to
reflect this physical constraint. The dashed
horizontal axis which appears in fig. 9
reflects this ad hoc axis shift, which is based
on physical reasoning.

3.3 Stationary Buffeting Response

The motions which resulted from allowing the
elastically-supported section models to
oscillate freely in the presence of buffeting
forces due to upstream and signature turbulence
were digitized and recorded on magnetic tape.
Figs. 10-12 contain plots of the dimensionless
root mean square displacement versus @ the
reduced velocity for four different motion
conditions. The torsional displacement is
expressed in terms of radians, the vertical
motion is rendered nondimensional by dividing
the motion by the deck width. The wind
velocity 1s reduced by the free vibration
natural frequency of the particular degree of
freedom under consideration and by the deck
width.

The wuse of three different end support
conditions required the oabservation of four
different types of motion. The four
displacement-types were: 1.) vertical single-
degree-of-freedom motion, 2.) torsional single-
degree~of-freedom motion, 3.) the vertical
component of a two-degree-of-freedom motion,
and 4.) the torsional component of two-degree-
of-freedom motion. Figs. 10.a.-c. contain the
RMS vs reduced velocity plots for the
unmodified Deer Isle deck section under four
flow conditions. Fig. ll.a.-d. contain the rms
displacement vs. reduced velocity plots for the
fairing-modified Deer Isle deck section. Figs.
12.3.-12.d. contain the RMS displacement vs.
reduced velocity plots for the Golden Gate deck
section.

4. INTERPRETATIONS AND CONCLUSIONS

The measurements of the flow conditions
downstream of the gust generators indicated
that the flapping airfoils are indeed capable
of producing controllable large-scale gusts.
If the airfoils are held in a neutral
stationary position the resulting turbulence
flow field is probably smooth enough to be used

as a nongusting reference flow condition. The
ability of the gust generators to simulate
prototype field conditions has not been
entirely verified, although these studies
indicate that it should at least be possible
for those prototype conditions where the
turbulence intensity exceeds 10%.

The flutter derivative measurements indicated
that the presence of upstream turbulence will
produce noticeable changes in the flutter
derivatives. The Af(K) flutter derivative for
the unmodified Deer Isle deck section displayed
a moderate change under smooth and gusting flow
conditions. The A¥(K) derivative for the
"Laminar" flow was unmeasurable in the reduced
velocity range of 2-4 because of strong vortex-
shedding action. The results indicate that the
presence of the upstream turbulence in the
"Low-Pass" flow have indicated causes a slight
positive trend in the A¥(K) derivative, which
indicates a destabilizing tendency due to the
upstream gusting. The fairing-modification to
the Deer Isle deck section produced radically
different flutter derivatives from those of the
unmodified Deer Isle deck section.
Nevertheless, the presence of upstream gusting
in both the "Grid Turbulent" and the "Low-Pass"
flow causes an increased positive
(destabilizing) trend in the A¥(K) derivative.
Likewise the Ar(K) derivative for the Golden
Gate Deck section also showed this  same
destabilizing trend in the Az(K) derivative for
the smooth and gusting flows.

Since the tendency of upstream gusting to
produce an increased aerocelastic torsional
instability is somewhat contrary to the
conventional wisdom that turbulence is a
stabilizing factor in bluff-body aerodynamics,
the Af(K) flutter derivative for the Golden-
Gate deck section was also measured by the
alternative least-squares spectral width
prccedure.  The remeasured A%(K) derivative
shows the same destabilizing tendencies due to
upstream gusting as that of the transient
response measurements. Therefore, in addition
to verifying the result that upstream gusting
can indeed exert a destabilizing influence upon
the torsional dynamic motion of bridge deck
section models, the two methods of system
identification were verified.

The RMS displacement vs. reduced velocity
curves exhibited a behavior that was consistent
with the results of the flutter derivative
experiments. The unmodified Oeer Isle deck
section showed an increased RMS response due to
the upstream gusting except for certain
isolated peaks which may be attributed to the
vortex-shedding action in the  smoother
“"Laminar" and "Neutral” flows. The changes in
the flutter stability of the flutter stability
of the unmodified Deer Isle deck section were
not extremely dramatic. The fairing-modified
Deer Isle deck section showed a considerable



increase in the vertical motion due to the
presence of upstream turbulence. Since the
addition of fairings produced a deck section
that was quite stable, no changes were
observable in the aeroelastic stability of the
fairing-modified Deer Isle deck section. The
Golden Gate section also exhibited an increased
vertical response to upstream gusting. The
presence of turbulence in the "Low-Pass" flow
caused to section to become unstable at a lower
velocity than that which was encountered in the
smoother "Neutral" flow. This destabilizing
trend was verified by the flutter derivative
measurements. The instability which appeared
in the Golden Gate motion was a torsional
flutter-type instability, in spite of rather
larger vertical buffeting motions.

Some of the overall conclusions that can be
drawn from this study are that the use of
flapping-airfoil type gust generators is a
viable method of producing controllable large-
scale gusting flow patterns. The future
research capabilities of this apparatus are
virtually unlimited. The measured changes in
the aercelastic behavior of the section models,
at present forms a rather small data base.
However, the preliminary conclusions that can
be drawn from these results are that large-
scale upstream gusting may, in  some
circumstances, be destabilizing and the gusting
will possibly suppress vortex-shedding action.
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Fig. 1. Line drawing of the flapping-airfoil
gust generators positioned downstream of the
wind tunnel exhaust nozzle and upstream of the
section model.
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Fig. 2.a. Unmodified Deer Isle-Sedgewick,
Maine, bridge deck section.

Fig. 2.b. Fairing-modified version of the Deer
Isle deck section.
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Fig. 2.c. Golden Gate deck section.
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b. vertical gusting.

Fig. 3. Typical simultaneous gust velocity time
histories for the "Neutral" flow at a nominal
mean velocity of 7 ft./sec.

a. Actuator cisplacement.

1’ b. Horizontal gusting.

Fig. 4. Typical simyltaneous gust velocity time
histories for the "Low-Pass" flow at a nominal
mean velocity of 7 ft./sec.



c. Vertical gusting.

Fig. 4. (cont.) Typical simultaneous gust velocity time
histories for the "Low-Pass" flow at a nominal
mean velocity of 7 ft./sec.

Ft.-Sec.u"
Sec.
.
s
Ft.-Sec, b8
Sec. o8
(Y]
EX
(Y]
818 .
In.-Sec.
L4 Y] 0 5
Horizontal velocity Spectrum Hz.
[ §H
s
18
(¥ ] s
o 5 10
(1] . .
Vertical velocity Spectrum Hz.
[ 1]
(¥ ]
(¥
0 5 10
Hz.
Actuator Displacement Spectrum
Fig. 5. Actuator and gust velocity spectra

corresponding to the "Low-Pass" flow.

10



TUT  WoXy pajoelIxa

+A379078A PadnPal “SA by D
-

‘SBATIBATIBP 1333074

@8 2-
oo
@ ez 8st 8 et [N umo:moa
» 0.
CBN/AY Y o w CRC]
00 4
o ]
« o
.NPQo "o, "
o a2
SSvYd K0T O
IVHLINDIN - MO [ e 4
(A/82) YH
»*
*A310018A padnpax ‘sa £y q
v
L2
SSYd A0 v
AvaLN3IN ©
o149 o
HYNINYT » W0y 2o~
e-a Ry ay B2
(EBN/AS 7 m..ﬂoozs 20
P
L 2 A
- 098" gao 3°
oV g e
= A
% a9, *
a nchnﬂo@ 2]
o
ra

M/ 82y €y
-

:3bpraq srsy

SIUBWTI3AX8 UOTITPUOD

*A3T00T3A DaINPal "SA

Jasqg parytpowun 9 BT4

T

CI S

ar-
o...... 8-z
o o -
0o » Oo -
° Bz T o st o " 9os,
o L PV V. - oe
(BN/A) oco N
l‘(l
-4
SSYd AQY O
CIWHLNIN «  'AOT3 oy
A/u2> Yo
»
-A310013A paonpal ‘saly e
.
2 e~
e t e~
m_ﬁm -
o-e a9 o, @.mo ..
° fl;.
CBN/AY %Q -}
- o
T e
- o
oo o e
A4
%@@cooﬁfﬁ%q
SSYd A0 ¢ °
IYHININ ©
Q1Yo o .
BYNIKY = LLteRF) Z2'9
Q\:mvm,«



. *sjuawrIadxa UDT3ITPULD TeriTUT WOl pajoelI}xa
SBATIBATISD  1333NT4 :abprag ersr J98Qg By3 Jo coamuw>umCSo&-chHmu#.mE

“A312019A paonpa1 “sa Pup “A313073A paonpax sa Ty 2
2 ‘8- 2y
-
e, o -
-
e o 82~
-
. LR o, o, o o
. . . . g0 oo
BEL .., B o ot 8's o 0z S q.o....éo-o 0700 05ea00
“ i - “Guw U9
<aks RS I 4 TS Ty e tatne e (LR BELL B e et i "0, oa
oo ° ©o0dje BN/ AS M T .
GO -
0g 9O
0 .
ar oz
S5vd A0 o
IVHLININ MUY 28 SSYd M0N0 0
su » IVEININ = MO ar
Arugy 'y H/82y I
-
. Ty .
¢ *A310013A paanpal “sa [Y-e
*A3TO0T3A P3INPaI “SA J¥eq
98- v o~
SSvd mO7T ¥
IvdLnNaN © -
orys o ER.
HYNINYT = *RO7TS € 8- - 2~
op. = e
v ©%g T .
v ccaoomog ot%' -
N . N o cQ -
28 e-s By 8z o o 88 2°9 ﬁﬁuwiuuuoeou&ma%qaﬁmnh» )
@NsAS NECEC SR A A & A PR e
o Voo 2°9 900 e
o hd o
v 6. 00000
v ¢ 0 20
o .
" 0000 €e
o
o ¢ v 008” S5Vd AD ©
o v o TIYYiN3aN 9
o o a1s3 o .
9% 98 HYNIWYY » 073 vo

o Ax\:mvm,\ (A, 42> w<



*SJUaWTIadxa UOT}TPUOD

TBTITUT WOl PajdBIlXa SIATIBATISP J93INT4  1UOTI08S »oap ajey uaproy g -BT4

*A3100TaA paonpal “sa Y p
»

+£3100739A P3ONPIL “SA H: )

v CR- 1
-
-~
- - ." o
- 22~ . T o 2 8-
-
. . o . %o
" * e®e ww o - e oo‘ﬂ o0
N . Q! o = w0
eez oSt . g 0 05 b 0% oz sst T Tavedt Tt Ce-mmmg,
EN/A> U a L] b oo
[ 9 q o (BN/A) )
o
o
° 82 ER)
DDDQ
SSYd A0 ©
55vVd M0 O
TIWHININ - MOy L 4 TIVHIN3N - MO 4 e ot
(S ugy T /8y W
- »
A eep By .
1190T3A P30NPAT “SA (¥ -q -A313073A P3ONP3I *Sh Zy '
»
9 g 2 o-
€ a- —
.o
[ ] a-9 ey a-z tttttn.%ooudaiénmﬁ
] ] ane BP0 a T,
(BN/AY e sTTvveve a® e ool *88a o-a
.
..Qaa.%o @NIAT e 5000
oo nd
lt.-' o
........ 0 (-]
w»*" goo000? g
-
SSvd MO O
IWHIN3IN » L (s ¥] Loa 55vd A0 O
i WVHLAIN = *ADYS za
A 2> By ey 2y



) ‘PaTqeus * 4°Q*qQ uOTSIO}
AJTI0T8A PIONPBI *SA *dSTP TBUDTSIO) SWy

4
UCTIJ8S >08p  3TSI 138 PatyTpowun <301 614
GN/A
[} 9 4 2
qo<<qq<<ocv§ ope ‘@
[+
o og’ voe ‘g
o
o Sg b
Q uo o ...M
2] DQO
s 0 ega 8 O
oot
)
- e}
g
2188 2
m
S5vd-a0Y © _M“
VHIN3N © g Z
gg'g =
a1ug o ®=
HYNIWYT = RO
228 '@
*PBTQeUs ° 4°(0°Q [e3T3I8A PuB UOTSIo)
*A310073A PaoNPal *sA “dSTP TBUOTISIO} Swy
4
UOT3D8S D8P 3TST 188Q PATTPOWUN  .g.gy BT 4
BN/A
[} 2 v 2z
200 2
ocm¢mnln“ﬂ s
ree @
)
8 z
o 1]
aoe ‘9 O
o o
o w
a ke
-8 . 1
ziee 2
. m
z
SSVd-A0T v, e m
WHLNIN © & siga &
arus o &
YVNIHYT = RO o v
* P
b LEL N

. ‘P31Qeuad - 4°0*Q TedT3I3A PuUB UCTSIO0}
AJTO0T3A paonpal *sa -dSTP [EDTIIAA SWy

‘u0T3035 osp arsy

133g pPatTpowun

Q01 B4
GN/A
1 21 8 d
- oo WYTOTY 0D 8
° oW, v
o c@ -
u:o v v
ow.w.. gve 9
» c (4]
ca® e’
o A -
- 4<< v
a v vV . 808 e
v o
Q - o
o zia°8
.
o a
SSVd-AQT ¥
WHLINAN O 9189
o1¥o o v
HYNIWYY »  'mOMd
920 ‘8
TSTXE TBOTIISA 8Y3 Ul JJ4TYS
J04 pe  S3IBITPUT (e -----) ‘pOyjsu  AIO}STY
2wty AIeuoTiels a8y} AQ pajoelIXad  ‘aATIBATISP
I333nTy  uoT3das xo8p 30prig s3en  uapron 6 614
20~
colo - 1-e-
o
- vn\u-:&.\:u:.n.\ |o.mdu¢u\ftt'o\tmn.- -
28 ?° - T 12 a8 00000
Onanl 8-
BN/AY ¥
1'a
S5Vd-R01Y 0 z'a

IVHLNIN »

4
R Aru2> 2V

LN3W32VdS 10 SKWY



‘Pa1geus *4°0°Q TedTi1eA
‘A310073A PaoONPal *SA “dSTP TEITIIBA Swy

‘UoT3085 »23p aTsI I3ag paryIpow butitey  prIT -Bry4
aN/A
9t 2t )
- g "“ pec e
. -
*E T wen - 00
- (-5 ]
- * - o 2
. ® o k<
- - o s
- DD
[ eoe 0 O
[+]
w0
0 4 v
] r
0 3>
2180 2
o
R m
o0, z
ata0 4
o  SSVdgol o
0 WHININ < 'm0Y4
Q
o o
o 820 @
o o
. 'P3TQBUS “ 4°0'(Q TEJTII8A PUB UOTSIO)
) A3T00T8A paonpal -sa *dsTp TRITIIBA SWY
UOT103S o8P ITsI 13 3 ow Butite
30 PanyIp t1Tey gr1r .Dw.m
aN/A
91 zt 8 y
ou-euwaoow‘.@]’. oee '8
sl DO&MQ oo ve M
ce o oﬂm Qd 2 v g,
- fo_Owosde Can® M
. 0w o&o&ﬁd ‘tnn_n - Yvov o8 Q
o' - ad v P
o0 080 5 4o v X
s do 9a LASE R "
=] o v v
o 9% v v, o202 O
¢ )
I 2
v 4>
" 21270 2
vV, @ .WJ
v §Svd-AO, ¥ M
WHIN3N O stae 5
v
v alyg o
¢ HYNINVY = tMO"3
azo e

‘pa{geus * 3°p°Q uoTSio}
$£3T00TaA PaONPaI “SA “dSTP [BUOTSIO] S

‘unt3oas  »0ap aIsI isag patyrpow buritey  -o-yy ‘614
BN/A
e 9 14 4
o ERPTEw: =273 5 ST bl abdananantind el
%.qh.wc.g}u .
3, © .
- yo0 0
- 2
n
ev0 8 O
)
v
5
218 2
m
z
SSYd~AQT ¥ W‘
WHIN3N 9 O_G.Bl
glys o
HYNTHYTY » MO4
aze e
*patqeus " 3°0°Q TEOT1I3A pue UOTSIO}
¢A3T00T3A paodnpal *sAa *dsSTP TRUOTSIOY Shy
‘uoT3o8s »o8p arsI 193 patytpow Butites  .perp -Bry
8N/A
8 9 v 2
J&Mg"d"‘. ave e
B R D et A
F RPN §e3 o e e
o
v v .
w o B oo a&
z
o ]
-
° aes e O
- - S
.o .Hu
2108 2
m
z
z
SSYd-ADT V¥ .
WHIN3N C [+ 381" ] 5
a1y9 o
HYNIHVYY o IR0 4

92o e



*paTqeua * 4°Q°Q UOTSIO
‘A3T20T3A paonpal .m>5am€ ﬂmmommucw mzw Y ‘'P3TQEUS " 4°0°Q TBOTIIAA
‘UOT309S >08p 3389 U3PTOD  -przr -Bry 3TI073A P32NPaL *sA "dSTP [BITITBA SWy

L
UOTI09S 03P 3389 UAPTOT .51 -fry
8N/A
aN/A
8 9 v 2
s RGO o o0 ‘2 o 2t 8 ’
JRITN obotrovh FPCTE LA e nada. i Lhdd [0 ]
- r PR L 000°
- - o (34
o TR LSttt t'( “300 o °
b} h g00°® vo0 ‘0
] W . (3] w
% »n
2000 o’
= 8e?, o ego e O
- M Fﬁ\dﬂ
o
e0e 0% S
- 0 o ziee >
m PR:1 o
s}
o8 4 5 © .o
SSVd-M01 ¢ ssva-Ron © 9180 5
L]
IHININ « A0 IHININ ¢ 074
-]
226 '8

*patqeua *4°0°Q [EBOTIIBA pue uDT$IO0)
$A310073A pasnpal SA OSIP TEDTII5A SWY
fU0T}03S %03p 3jen uapio9 ‘e 21 b1y

'P31QeuU3 * 4°0°( TEOTIIAA PUB LOTSI10}
fA3100T3A PIINP3I *SA *dSIp TBUOTSIO} SWY
‘UoT308s »23p 3jeg uapton  -qrzy ‘Bry

8N/A
BN/A gt 21 E:] 1 4
[:] [*] v 2 PEPCLLLIL O s aatig ol
MR ETLET LS LA At o8 '8 UL 2 000°
- 8 8 »e 0
- . 0 e o ocn
e ° [T -
-] o 0O k<
k) o 0
z
©
v o 0°0 aoe '8 O
- R ° v
. ot 0, 0 B
n r
o 2 o 2108 2
o D> m
€os 2 o 4
m m
F s13°8 3
roe 2 SSVd-AD O
S5Vd-A01 0 TVMIN3N - MOTS
WVHININ «  IMOTTS
020 '8

soa



